2 Spatial Displacements

Spatial Displacements are used in the formulation of planar and spherical motion. We start with the fundamental plane and spherical motion, and then extend this formulation to the general spatial motion. We use a more general formulation so that the concepts of spatial motion are better understood. The concepts of spatial motion are developed in this course, and the student is then prepared for an in-depth study of the subject. The student is then prepared for an in-depth study of the subject. The student is then prepared for an in-depth study of the subject. The student is then prepared for an in-depth study of the subject. The student is then prepared for an in-depth study of the subject.

Introduction

The importance of spatial motion cannot be overstated. The concepts of spatial motion are developed in this course, and the student is then prepared for an in-depth study of the subject. The student is then prepared for an in-depth study of the subject. The student is then prepared for an in-depth study of the subject. The student is then prepared for an in-depth study of the subject. The student is then prepared for an in-depth study of the subject.

Abstract

Irvine, California
University of California, Irvine
Department of Mechanical and Aerospace Engineering

Professor
J.M. McCarthy

Doctoral Candidate
Pierre Landolle

Teaching Spatial Mechanism Design via Spatial Mechanism Visualization
\[
\begin{pmatrix}
\frac{\lambda}{2} A - \frac{\lambda}{2} A^T
\end{pmatrix}
= q
\]

\[
\begin{pmatrix}
\frac{\lambda}{2} A - \frac{\lambda}{2} A^T
\end{pmatrix}
= [d]
\]

where

\[
q = n[d]
\]

3 Planar A.R. Synthesis

For each element of the planar A.R. syntheses, an ideal tool constrained to move on the surface of a sphere can be viewed as motion on the surface of a sphere.

The methodology for performing the dimensional

The methodology for performing the dimensional

\[
\begin{pmatrix}
\frac{\lambda}{2} A - \frac{\lambda}{2} A^T
\end{pmatrix}
= [d]
\]

\[
q = n[d]
\]

3 Planar A.R. Synthesis

For each element of the planar A.R. syntheses, an ideal tool constrained to move on the surface of a sphere can be viewed as motion on the surface of a sphere.

The methodology for performing the dimensional

The methodology for performing the dimensional

\[
\begin{pmatrix}
\frac{\lambda}{2} A - \frac{\lambda}{2} A^T
\end{pmatrix}
= [d]
\]

\[
q = n[d]
\]

3 Planar A.R. Synthesis

For each element of the planar A.R. syntheses, an ideal tool constrained to move on the surface of a sphere can be viewed as motion on the surface of a sphere.

The methodology for performing the dimensional

The methodology for performing the dimensional

\[
\begin{pmatrix}
\frac{\lambda}{2} A - \frac{\lambda}{2} A^T
\end{pmatrix}
= [d]
\]

\[
q = n[d]
\]

3 Planar A.R. Synthesis

For each element of the planar A.R. syntheses, an ideal tool constrained to move on the surface of a sphere can be viewed as motion on the surface of a sphere.

The methodology for performing the dimensional

The methodology for performing the dimensional

\[
\begin{pmatrix}
\frac{\lambda}{2} A - \frac{\lambda}{2} A^T
\end{pmatrix}
= [d]
\]

\[
q = n[d]
\]

3 Planar A.R. Synthesis

For each element of the planar A.R. syntheses, an ideal tool constrained to move on the surface of a sphere can be viewed as motion on the surface of a sphere.

The methodology for performing the dimensional

The methodology for performing the dimensional

\[
\begin{pmatrix}
\frac{\lambda}{2} A - \frac{\lambda}{2} A^T
\end{pmatrix}
= [d]
\]

\[
q = n[d]
\]

3 Planar A.R. Synthesis

For each element of the planar A.R. syntheses, an ideal tool constrained to move on the surface of a sphere can be viewed as motion on the surface of a sphere.

The methodology for performing the dimensional

The methodology for performing the dimensional

\[
\begin{pmatrix}
\frac{\lambda}{2} A - \frac{\lambda}{2} A^T
\end{pmatrix}
= [d]
\]

\[
q = n[d]
\]
cussion of Spinx, see Lachelle et al., 1993. The
Spinx is a complete graphics based interactive pro-
tutorial on spherical 4R mechanisms. For further det-
ails see Lachelle et al., 1993.

\[\begin{bmatrix}
0 & 0 \\
-1 & 1
\end{bmatrix}
\begin{bmatrix}
\dot{\theta} \quad \dot{\phi} \quad \dot{\psi} \\
\dot{x} \quad \dot{y} \quad \dot{z}
\end{bmatrix}
= \begin{bmatrix}
\delta \\
\delta
\end{bmatrix}
\]

where, \(\theta \), \(\phi \), and \(\psi \) are the angles of rotation.

\[q = n [d] \]

The methodology for the dimensional synthesis
of spherical 4R mechanisms for three position rigid
body. Geometry constraints are written in equation form as

\[\begin{align*}
\cos \alpha &= n \cdot \dot{x} \\
\cos \alpha &= n \cdot \dot{y} \\
\cos \alpha &= n \cdot \dot{z}
\end{align*} \]

A spherical 4R dead is shown in Fig. 4. Let the

A spherical 4R dead is shown in Fig. 4. Let the
complete spherical 4R mechanism is shown in Fig. 3.

Note that we must solve Eq. 3 for each desired mo-
ment position, and finally u is the desired rod pivot.

\(\theta \) is the coordinates of the moving pivot in the

\[\begin{bmatrix}
1 & 0 & 0 \\
-\dot{x} & 1 & \dot{y} \\
-\dot{z} & -\dot{y} & 1
\end{bmatrix}
\]

\[\begin{bmatrix}
1 & 0 & 0 \\
\dot{x} & 1 & \dot{y} \\
\dot{z} & -\dot{y} & 1
\end{bmatrix}
\]
7 Conclusion

Our experience has been that teaching spatial mechanics and kinematics can be enhanced by using practical exercises and projects. The students have been engaged in building and assembling the spherical mechanism prototypes. They have been able to see the relationships between theory and practice, which has improved their understanding of the subject. The use of 3D modeling software has also helped them visualize the mechanisms in a more effective way.

6 The Prototyping Kit

We have designed, developed, and manufactured a spherical mechanism prototyping kit. The kit is designed to provide students with a hands-on experience in the design and construction of spherical mechanisms. It includes all the necessary components and materials for students to design and build their own spherical mechanisms.

References

Standards Setting Future

October 31 - November 2, 1993
Mid-Year Conference Proceedings

Graphics Division
Engineering Design
Engineering Education
American Society for Engineering Education